QUESTION BANK 2016 SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road – 517583 **QUESTION BANK (DESCRIPTIVE) Subject with Code :** MATHEMATICS-III(15A54301) Course & Branch: B.Tech(ECE) Year & Sem: II-B.Tech & I-Sem **Regulation:** R15 UNIT –II 1. Find a positive root of $x^3 - x - 1 = 0$ correct to two decimal places by bisection method. [10 M] 2. Find out the square root of 25 given $x_0 = 2.0$, $x_0 = 7.0$ using bisection method. [10 M] 3. Find out the root of the equation $x \log_{10}(x) = 1.2$ using false position method. [10 M] 4. Find the root of the equation $xe^x = 2$ using Regula-falsi method. [10 M] 5. Find a real root of the equation $xe^x - \cos x = 0$ using Newton-Raphson method. [10 M] 6. Using Newton-Raphson Method b)Find cube root of 27. [5 M] a) Find square root of 10. [5 M] 7. Apply Gauss-Seidel iteration method to solve the equations of 20x + y - 2z = 17; 3x + 20y - z = -18; 2x - 3y + 20z = 25.[10 M] 8. Apply Crout's method to solve the equations: 3x + 2y + 7z = 4; 2x + 3y + z = 5; 3x + 4y + z = 7. [10 M] 9. Find the root between 1 and 1.5 of the equation $\sin x = \frac{1}{x}$ (measured in radians). Carry out computation up to 7^{th} stage. [10 M] 10. a) Define transcendental Equation. [2 M] b) Using Newton – Raphson method find square root of a number. [2 M] c) Write the formula for Regula-Falsi method. [2 M] d) Write the first approximation of the equation $3x = \cos x + 1$ by bisection method. [2 M] e) Using Newton –Raphson method find reciprocal of a number. [2 M] Prepared by: **<u>R.LAKSHMI DEVI , E.KARTHEEK</u>**.

	OUFSTION	J RANK (OR IF	CTIVE			
		$\frac{\mathbf{DAINK}(\mathbf{DDJE})}{\mathbf{U}(15A54201)}$			1 (EQI	-1
Year & Sem: II-B.Teo	ch & I-Sem	I(13A34301)	Course o Regula	tion: R15	cn (ECE	2)
		<u>UNIT – II</u>				
1. Example of a transcene	lental equation				[
A. $f(x) = c_1 e^x + c_2 e^{-x}$	$f = 0$ B. $f(x) = x^2$	$x^{2} + x - 7 = 0$ C.	$f(x) = x^2 + 5$	x - 7 = 0 D. No	one	
2. Example of a algebraic	equation				[
A. $f(x) = c_1 e^x + c_2 e^{-x}$	f = 0 B. $f(x) = x$	$f^3 - 7 = 0$ C. f	$(x) = c_1 e^{2x} + c$	$e_2 e^{-3x} = 0$ D. No	one	
3. The order of converge	nce in Newton-Raph	son method is			[
A. 1	B. 3	C. 0		D.2		
4. The Newton-Raphson	method fails when				[
A. $f^{1}(x)$ is negative	B. $f^{1}(x)$ is zero	C. $f^{1}(x)$ is to	o large	D. Never fails	5	
5. In case of Bisection me	ethod, the convergen	nce is			[
A. linear	B. 3	C. very slov	v	D. quadratic		
6. Under the conditions the state of the sta	hat f(a) and f(b) have	e opposite signs	and a <b, f<="" td="" the=""><td>irst approximati</td><td>ion</td><td></td></b,>	irst approximati	ion	
of one of the roots $f(x)$)=0, by Regula-Falsi	i method is giver	n by		[
A. $x_1 = \frac{af(a) - bf(b)}{f(a) - f(b)}$			B. $x_1 = \frac{af(x_1 - x_2)}{f(x_1 - x_2)}$	$\frac{b) - bf(a)}{b) - f(a)}$		
C. $x_1 = \frac{af(a) + bf(b)}{f(a) + f(b)}$			D. $x_1 = \frac{af}{f}$	$\frac{bb-bf(a)}{bb+f(a)}$		
7. Bisection method is us	sed for				[
A. Solution of algebra	ic or transcendental	equation	B. Integration	of a function		
C. Differential of a fu	nction		D. Solution o	f a function		

QUESTION BANK 2016

8. For method of solution of equations of the form $f(x) = 0$ approximation x_0 is to be very						
close to the root and $f(x_n) \neq 0$ A. Bolzano B. Newton-Raphso	n C.Secent	D. Chord	[]		
9. In the bisection method of solution of an equation of the form $f(x) = 0$ the convergence of						
sequence $\langle x_n \rangle$ of midpoints to a root of f(x)	0 = 0 in an interval (a,b) wh	here f(a)f(b)<0				
is			[]		
A. Assured and very fast	B. Not assured but very	fast				
C. Assured but very slow D. Independent on the sequence of point						
10. Newton-Raphson method is used for]]		
A. Solution of algebraic or transcendental equation B. Integration of a function						
C. Differential of a function	D. Solu	ution of a function				
11. In the method of False position for solution of an equation of the form $f(x) = 0$ the convergence						
of the sequence $\langle x_n \rangle$ iterates to a root of	f(x) = 0 is		[]		
A. Assured and very fast	B. Not assured but very	fast				
C. Assured but slow	D. Independent on the se	equence of point				
12. In Newton – Raphson method we approxim	nate the graph of f by suita	ble	[]		
A. Chords B.Tangents	C. Secants	D. Parallel				
13. Newton's iterative formula for finding a root of $f(x) = 0$ is						
A. $x_{n+1} = x_n + \frac{f(x_n)}{f''(x_n)}$	B. $x_{n+1} = x_n - \frac{f(x_n)}{f''(x_n)}$					
C. $x_{n+1} = x_n + \frac{f(x_n)}{f'(x_n)}$	D. $x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$					
14. Newton-Raphson method is also called			[]		
A. Method of tangent	B. Method of fals	e position				
C. Method of chord	D. Method of seca	ants				
15. Among the method of solution of equation of the form $f(x) = 0$ the one which is						
used commonly for its simplicity and grea	t speed ismethod		[]		

QUESTION BANK 2016 A. Secant B. Regula falsi C. Newton – Rasphson D. Bolzano 16. The Regula Falsi method is related to ______ at a point of the curve] ſ A. Chord B. Ordinate C. Abscissa D. Tangent 17. The Newton – Raphson method is related to ______ at a point of the curve [] A. Chord B. Ordinate C. Abscissa D. Tangent 18. Newton's iterative formula for finding the square root of a positive number N is [] B. $x_{i+1} = \frac{1}{2} \left(x_i + \frac{N}{x_i} \right)$ A. $x_{i+1} = \frac{1}{2} \left(x_i - \frac{N}{x_i} \right)$ C. $x_{i+1} = \left(x_i - \frac{N}{r}\right)$ D. $x_{i+1} = 2\left(x_i + \frac{N}{r}\right)$ 1 19. Newton's iterative formula for finding the cube root of a number N is ſ A. $x_{n+1} = 3\left(2x_n - \frac{N}{x^2}\right)$ B. $x_{n+1} = \frac{1}{3} \left(2x_n - \frac{N}{x^2} \right)$ C. $x_{n+1} = \left(2x_n - \frac{N}{x^2}\right)$ D. $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{N}{x^2} \right)$ 20. Newton's iterative formula for finding the reciprocal of a number N is [] A. $x_{n+1} = \left(x_n - \frac{N}{x^2} \right)$ B. $x_{n+1} = x_n \left(2 - \frac{N}{x} \right)$ C. $x_{n+1} = x_n (2 - Nx_n)$ D. $x_{n+1} = x_n (2 + Nx_n)$ 21. Regula- falsi method is used for] L A. Solution of algebraic or transcendental equation B. Integration of a function C. Differential of a function D. Solution of a function 22. The cube root of 24 by Newton's formula taking $x_0 = 3$ is_____ 1 ſ A.1.889 B.2.889 C.5.889 D.4.889 23. The square root of 35 by Newton's formula taking $x_0 = 6$ is_____] ſ A.7.916 B.5.916 C.6.916 D.4.916

				QUESTION	BANK	2016
24. Example of a t	transcendental equati	on			[]
A. $f(x) = x \log x - 1.2 = 0$ B. $f(x) = x^3 - x - 1 = 0$ C. $f(x) = x^2 + x - 7 = 0$ D. None						
25. Example of a a	algebraic equation				[]
A. $f(x) = x \log x$	A. $f(x) = x \log x - 1.2 = 0$ B. $f(x) = x^3 - x - 1 = 0$ C. $f(x) = x^2 \tan x + 1 = 0$ D. None					
26. If first two app	proximation x_0 and	x_1 are roots o	f $x^3 - 9x + 1 = 0$ a	re 0 and 1 by	bisecto	on
method then x_{i}	₂ is				[]
A.1.5	B. 2.5	C. 0.5	D. 3.5			
27. If first two app	proximation x_0 and	x_1 are roots o	f $xe^x = 2$ are 0 an	d 1 by Regula	-falsi	
method then x_{i}	$_2$ is				[]
A. 0.13575	B. 0.33575	C. 0.73575	D. 0.53575			
28. If first two app	proximation x_0 and	x_1 are roots o	$f x^3 - x - 4 = 0 ar$	re 1 and 2 by b	oisecton	l
method then x_{i}	$_2$ is				[]
A.1.5	B. 2.5	C. 0.5	D. 3.5			
29. If first two app	proximation x_0 and	x_1 are roots o	$f x^3 - x - 4 = 0 ar$	re 1 and 2 by I	Regula-	
falsi method t	hen x_2 is				[]
A.4.666	B. 2.666	C. 3.666	D. 1.666			
30. Newton's itera	ative formula for find	ing the pth r	oot of a positive nu	mber N is	[]
A. $x_{n+1} = \frac{1}{p} \left(p \right)$	$(p-1)x_n + \frac{N}{x_n^{p-1}}$]	B. $x_{n+1} = \frac{1}{p} \left((p-1) \right)$	$\left(x_n - \frac{N}{x_n^{p-1}}\right)$		
C. $x_{n+1} = p \left(\left(p \right) \right)$	$(-1)x_n - \frac{N}{x_n^{p-1}}$	E	$x_{n+1} = \left((p-1)x_n - \frac{1}{2} \right) = \left((p-1)x_n - \frac{1}{2} \right) = \left((p-1)x_n - \frac{1}{2} \right)$	$-\frac{N}{x_n^{p-1}} ight)$		
31. The general iteration formula of the Regula Falsi method is []						
A. $x_{n+1} = x_n + \frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$ B. $x_{n+1} = x_n + \frac{x_n + x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$						
C. $x_{n+1} = x_n - \frac{1}{j}$	$\frac{x_n - x_{n-1}}{f(x_n) - f(x_{n-1})} f(x_n)$)	D. $x_{n+1} = x_n - \frac{x_n}{f(x_n)}$	$(x_n - x_{n-1}) + f(x_{n-1}) f$	(x_n)	
MATHEMATICS	-III					

н.

QUESTION BANK 2016 32. If first approximation root of $x^3 - 5x + 3 = 0$ is $x_0 = 0.64$ then x_1 by Newton-Raphson method is [] A.4.6565 B. 2.6565 C. 3.6565 D. 0.6565 33. Newton's iterative formula to find the value of \sqrt{N} is] ſ A. $x_{n+1} = \frac{1}{2} \left(x_n + \frac{N}{x} \right)$ B. $x_{n+1} = \frac{1}{2} \left(x_n - \frac{N}{x} \right)$ D. $x_{n+1} = 2\left(x_n - \frac{N}{x}\right)$ C. $x_{n+1} = \left(x_n - \frac{N}{x} \right)$ 34. If first approximation root of $x^2 - 10 = 0$ is $x_0 = 3.8$ then x_1 by Newton-Raphson method is ſ 1 B. 1.215 C. 2.215 A.0.215 D. 3.215 35. Newton's iterative formula to find the value of $\sqrt[3]{N}$ is [] A. $x_{n+1} = \frac{1}{3} \left(2x_n + \frac{N}{x^2} \right)$ B. $x_{n+1} = \frac{1}{3} \left(2x_n - \frac{N}{x^2} \right)$ C. $x_{n+1} = \left(2x_n - \frac{N}{x^2}\right)$ D. $x_{n+1} = 3\left(2x_n + \frac{N}{r^2}\right)$ 36. If first two approximation x_0 and x_1 are roots of $2x - \log_{10}^x = 7$ are 3.5 and 4 by Regulaſ] Falsi method then x_2 is C. 3.7888 A. 1.7888 B. 2.7888 D. 4.7888 37. If first two approximation x_0 and x_1 are roots of $2x - \log_{10}^x = 7$ are 3.5 and 4 by Bisection method then x_2 is 1 ſ A. 1.75 B. 2.75 C. 3.75 D. 4.75 38. Crout's triangularisation method is also called] ſ A. Gauss elimination B. LU factorization C. Gauss jordan D. None of these 39. If first approximation root of $\cos x - x^2 - x = 0$ is $x_0 = 0.5$ then x_1 by Newton-Raphson method is ſ] A.0.5514 B. 1.5514 C. 2.5514 D. 3.3314 MATHEMATICS-III

				QUESTION BANK 2016			
40. If second approximation root of $x + \tan x + 1 = 0$ is $x_1 = 2.77558$ then x_2 by Newton-							
Raphson me	ethod is			[]			
A.1.798	B. 2.798	C. 2	D. 0.798				

Prepared by: **<u>R.LAKSHMI DEVI ,E.KARTHEEK</u>**.